Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

نویسندگان

  • Mathew Lyons
  • Des C Winter
  • Ciaran K Simms
چکیده

Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infarcted rat myocardium: Data from biaxial tensile and uniaxial compressive testing and analysis of collagen fibre orientation

Myocardial infarction was experimentally induced in rat hearts and harvested immediately, 7, 14 and 28 days after the infarction induction. Anterior wall infarct samples underwent biaxial tensile and uniaxial compressive testing. Orientation of collagen fibres was analysed following mechanical testing. In this paper, we present the tensile and compressive stress-strain raw data, the calculated ...

متن کامل

Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression.

Understanding the passive mechanical properties of infarcted tissue at different healing stages is essential to explore the emerging biomaterial injection-based therapy for myocardial infarction (MI). Although rats have been widely used as animal models in such investigations, the data in literature that quantify the passive mechanical properties of rat heart infarcts is very limited. MI was in...

متن کامل

Reiterated tension testing of silicone elastomer

A peristaltically actuated device, PADeMIS, composed of silicone rubber (SR) is under development for use in minimally invasive surgery. During locomotion, the device will be subject to a few thousand load changes involving varying, sometimes high, strains. The design is being optimised by finite element analysis, for which a constitutive law for the mechanical behaviour of silicone rubber is r...

متن کامل

Finite Difference Method for Biaxial and Uniaxial Buckling of Rectangular Silver Nanoplates Resting on Elastic Foundations in Thermal Environments Based on Surface Stress and Nonlocal Elasticity Theories

In this article, surface stress and nonlocal effects on the biaxial and uniaxial buckling of rectangular silver nanoplates embedded in elastic media are investigated using finite difference method (FDM). The uniform temperature change is utilized to study thermal effect. The surface energy effects are taken into account using the Gurtin-Murdoch’s theory. Using the principle of virtual work, the...

متن کامل

Analysis of the uniaxial and multiaxial mechanical response of a tissue-engineered vascular graft.

Tissue engineering is aimed at the fabrication of autologous cardiovascular implants, for example, heart valves or vascular grafts. To date, the mechanical characterization of tissue-engineered vascular grafts (TEVGs) has focused mainly on the material's strength and not on the deformation behavior. A total of 31 samples obtained from 3 mature grafts (out of the cells of a single donor) were te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 47 8  شماره 

صفحات  -

تاریخ انتشار 2014